



































































































What makes a programmer pragmatin

EarlyAdopter
Inquistive 5 Ask questions
Critical Thinker
Realistic
Jack of all trades

Care about your craft
Think About Your Work

Old IBM corporate Motto ConstantlyThink Critique
your workSounds like Hard work Realistic

Actively involved with a job you love
Write code that is easier to read

een time wasted in meeting

Individual Pragmatists LargeTeams
Some people think there is no room for
individuality on Large teams

Above statement is not true since individuality
matters a lot

It's a continuous Process






































































































Tobias It's Your Life

People complain about various issues main
answer to that is why can't you change it

Software Dev is closet where you have
control

You Have Agency

Industryoffers set of opportunity Beproactiveand take them I
you will have to
work for it

Topic 2 The Cat Ate My Source Code
Take charge of your carrier and don't be

afraid to admit ignorance on error

Be honest and direct and deal with
things professionally

Initiating Eisagigittbut youdon't have
full control

Assess Risk and






































































































Assess Risk and
don't take responsibility

Provide options Don't make
tamest
blame

Before approaching Why somethingcan't be done
whentheyaskdidpfgtff.is

th

hande this

IDonitsaycanitbedond provide
options

I don't know I will find out

Topic Software Entropy
disorder

goes to max
as Softwaredisorder max software Rot

fig
Implied notion that they will pay someday

Don't live with

BIE.awtjd.int
WrongDecision






































































































rong P s

Poor Code

IPsychologyandcultured Matters

first DononARt

Zico stone soup and Boiled Eggs

Be the catalyst for change
There may be start upfatigue

Remember the Big Picture

Topic 5 Good Enough Software

Writing a perfect software impossible

focus on writing a goodenough goodenoughfor
users future maintainers foryourpeaceofmind

Good Enough should not be taken as
bad inefficientcode thatworks

Make quality a requirement






































































































Topic 6 Your knowledge Portfolio

yourknowledge and experience assets

Fig
Managing an knowledgeportfolio is not that
different from financial

I

I Invest Regularly small butdaily habit
2 Diversify Ins Outofyourwork otherstuff

Gif 3 Manage Risk Don't put all youreggs
in one basket

4 Buy low sellhigh Javaearlyadopter
example

5 Review and Rebalance

Invest Regularly in yourknowledgePortfolio

Goat L Learn at least I languageevery year2 Read a technical book every month3 Read non technical books too
4 Take classes
5 Participate in local user groups meetups
6 Experiment with different environments
7 Stay Current

Even if you won't use that knowledge in resume
or your projects
Learn to become knowledgeable 1 Even if your






































































































Learn to become knowledgeable Even if your
project doesn't use that tech but it can
use those ideas

Cross Pollinationof Ideas is important

opportunities for learning if someone ask
something and you don't have faintestidea askothers communication

I
BuildNetworke

10 Critically Analyze what you read and hear

How to critically think

s Ask the fivewhy's
2 Who does this benefit
3 What's the context
4 When or where this shouldwork
5 Why is this problem

Topic 7 Communicate

Good Idea is an orphan without effectifommunication

English is Just Another ProgrammingLanguage






































































































English is Just Another rogrammingLanguage

Some Important Ideas Regarding Communication

Know your Audience

way of communication is veryimportant
a gather feedback

Know what you want to say
s write outline
as refine

Choose your MomentChoose your style
Make it look good

Ideas are important
deserve a goodlooking

vehicle
Involve your Audience

takeearly review feedback
improves communication

Get Back to People
always respond sayubut

Its Bothwhat yousay and thewayyousay

Documentation

130 Build Documentation In Don't Bolt It on






































































































Build Documental on Jon 1 Boll Il on

Topi 8 The Es sense of GoodDesign
Good Design is Easier to change than Bad Design

ETC Easy to change
ETC is a value not a rule
It should be at back of mind

There is an implicitpremise in ETC Person is able
to tell whichofmanypaths will be easier to change
in the future since it may not be obvious

There are 2 ways to deal with it
I Since we are not sure what form your
change will take fall back to ETC path
2 Treat this as a way to develop instinctsLeave some marker or comments in code

9 Dry The evils of duplication

Programers are always in maintenance mode
Requirement understanding and clients

change all the time

Only way to develop software reliably and
to make our development easier to understand
and maintain is to follow what we call
DRY principle






































































































DRY pm up e
DRY Don't Repeat Yourself

Everypieceof knowledge must have a single
unambigous authoritative representation within

a system

DRY IS More than code

160 Make it Easy to Reuse

Topic 20 Orthogonality

In computing it signifies independence or decoupling
Benefits of Orthogonality

Eliminates Effects between unrelatedthings
We get 2 Benefits Increasedproductivity reduced

risk

Design

System should be
composed of a set of
co operating modules
each of which implements independent functionality






































































































of which implements independent functionality
Sometimes these components maybe organised in
layer each providing a lot of abstraction

Coding
Keep your code decoupled
Avoid global data
Avoid similar function

Testing
Unit Testing becomes easier in orthogonalsystem

Documentedcontent and Presentation
Write MD and leave presentationto some tool

Topic21 Reversibility

180 There are no final decisions

Flexible Architecture
Considering architectural volatility in these

times Best course of action is that make it

easy to change your code Hide third partyAPIs
behind your abstraction layers Break your






































































































behind your abs on layers I reak your
code in components even if deployed as
monolith

Fargo following fads

Topic12 Tracer Bullets

Code that glows in the dark

Use tracer bullet to find the target
Look for requirements that define system
Look for areas ofdoubts where biggest risk is
Prioritize development accordingly

Advantages of the tracer code approach
User get to see something workingearly
Developer build a structure to work in
You have integration platform
You have something to demonstrate
You have better feel for progress

Tracer Bullets Don't Always hit their target

Ight
vis Prototyping

codehangs
together Taeyeon

I offinal






































































































codehangs
as a whole specific aspects

offinal
systems

tracer code is produces disposablelean but complete code
and forms skeletonofproject

Topic 13 Pfe and Post it Notes

Things to Prototype
Architecture
New functionality in an existing system
Structure or Contents of external datathird party tools or components
performance issues
user interface design

Prototype to learn

When buildingprototype details that can be

ignored
Correctness
Completeness
Robustness
Style

Prototyping Architecture

specific areas to look for
Are the responsibilityofthe major areas well






































































































me the responsibilityof major
defined and appropriate

Are the collaboration betweenmajorcomponents
well defined

Is coupling minimized
Can you identifypotential sources ofduplication
Are interface definition constraints acceptable

How Not to use prototype
Make sure everyone knows that you are

writing disposable code

Topic 14 Domain Languages

Program close to the Problem Domain

Tradeoff's between Internal and External language

take advantageof
featuresof its host

downside youre
bound to syntax semantics of ruby

Topic 15 Estimating
23 Estimate to avoid suprises

How Accurate is Accurate Enough






































































































H Nccu is Accurate Enough
where do estimates come from

Understand what's being askedBuild a modelof SystemBreak model into components
Give each parameter a value
calculate the answer

keep track of your estimation prowess

Estimating Project Schedule

Painting the Missile
Not one hand number but range of scenario
PERT technique

Eating the Elephant
CheckRequirements
Analyse Risk prioritize jiskiesitems
Design Implement IntegrateValidate with users

24 Iterate the schedule with code

What to say when asked for an Estimate

I'll get back to you

Topic 16 The power of plain tent

Keep knowledge in Plain Text

Powers of plain tent






































































































Powers of plain lead
Insurance against obsolescence
Leverage Existing tools
Easier Testing

Topic 17 Shell Games

Use the power of command shells

A shell of your own
Set color themes
Configure a prompt
Alias and shell function
Command completion

Topic 18 Power Editing
Achieve Editor fluency

Topic is version Control

Always use version control

BranchingOut
Take backup of your user preferences
dotfiles homebrew installs Ansible scripts
all current projects

Version Control as ProjectHub

Topic 20 Debugging






































































































Topic 2 Debugging

Embrace the fact that debugging is just problem
solving
fix the Problem Not the Blame

DebuggingMindset

Don't Panic

Debugging Strategies

ReproducingBugs
failing Test Before fixingcode

Coder in Strange Land
320 Read the Damn Error Message

Bad Result

Sensitivity to Input Values

Regression across Releases

TheBinaryChop Waite test thatfails current
release then do binarysearch action releases

Logging or tracing
RubberDucking
Process of Elimination






































































































330 Select isn't Broken

The Element of Suprise

340 Don't Assume It Prove it

Topic 21 Text Manipulation

350 Learn a Text Manipulation Language
Sed awk gawk perl

Topic 22 EngineeringDaybooks

ÉMFe reliable than Memory
2 gives place to store ideas that
aren't immediately relevant to task at
hand

3 Acts kind of like Rubber Duck

Chapter K Pragmatic Paranoia

You can't write Perfect Software

Build defenses against your own mistake






































































































Build defenses against your own mestake

Topic 24 Dead programs tell No Lies

Rather than ignoring errors try to find it

and Read the damn error menage

Catch and Release is for fish
Crash Early

Topic 25 Assertive Programming

Use assertion to Prevent Impossible

Assertion and side Effects
avoid problems like Heisenberg

debugging that changes behaviourof system
being debugged

Leave assertions Turned on

Topic 26 How to Balance Resources

finish what you start

file opening closing and coupledfins
Act Locally

when in doubt always reducescope

Nest Allocation






































































































Ness Allocal on

Objects and Exception Constructor Deconstructs

Balancing and Exception
1 Variable scope
2 Use finally in a try catch block

An exception antipattern

correct pattern thing allocates

beginprocers thing
finallydeallocate thing
end

When you can't Balance Resources
Checking the Balance

Topic Don't Outrun your headlights

420 Take small step always
checking for feedback and adjusting

before proceeding

fabad
o Results in a REPL provide
feedback
unit test provide feedback

on your last code change
User demo and conversation

430 Avoid fortunetelling






































































































Chapter5 Bend or Break

Topic 28 Decoupling

coupling is enemy of change because itlinks together things that must change in
parallel

Decoupled code is easier to change

3concept

2 Train Weeks

450 Tell Don't Ask
Don't make decisions based on internal

state of an object and then update the object

Thelawoffemeter written by Ian Holland

LODsays that method defined in class C should
only call

other instance method in C
Its parameters

Methods in objects that creates both
on the stack and in the heap
Global variables Y Nots good

Don't Chain Method Calls

The Evils of Globalisation
Insidious source ofcoupling






































































































Inside our source ofcoupling

Avoid Global Data

If it's Important Enough to be global
Wrap it up in an API

Inheritance adds coupling

Topic 29 Juggling the Real world

Waiting responsive Application

EVENTS represents availabilityofinformation

four strategies to helpin case an eventtriggers
1 finite state machines
2 The Observer pattern
3 Publish I subscribe
4 Reactive Programmingandstreams RxJI

Topic30 Transforming Programming

Programming is AboutCoding But Programs
are about Data

EmanatingPutting it all together

Don't hoard state pan it around






































































































Topics Intern Tax
Problem using Inheritance

Inheritance is coupling

Don't pay inheritance tax

Alternatives

Interfaces and protocols
Delegation
Mixing and traits

520 Prefer Interfaces to Express Polymorphism

530 Delegate to Services HarA Trumps Is A

50 Usemixins to share functionality

Topic 32 Configuration

550 Parameterize youappUsing ExternalConfig

Common data to be but in configuration
Credential for external services
Logging levels and destination
Post IPAddress Machine and cluster
name the app uses
Environment specific validationparameter
externally set values
site specific formatting details
Licence keys




















































































cent Legs

Shia Configuration yaml j son

Configuration as a service

Don't write Dodo Code

Chapter G Concurrency

tfextswitch Timesharing

I3 Breaking Temporal Coupling

Kirin we are

taught to thingof code
in sequential manner

king for Concurrency

Analyze workflow to Improve Concurrency

Activity Digerams helps us tackle dependencies
and helps us chart course forparallelism
or concurrency






































































































Topic 34 Shared State is Incorrect state

570 Shared State is Incorrect State

Non atomic updates Classic example where two
threads try to update legend

actually sofa
To make ops atomic use semaphores and other

forms of mutual exclusion

Wegive semaphore to give control to thread
but what happens if thread doesn't give
back control

Make the resource transactional
Multiple resource transaction
Non Transactional updates

Random failures are often ConcurrencyIssues

Other Kinds of Exclusive Access

Many libraries have support for some kind ofexclusive access to shared resources

They call it muted mutually exclusivemonitors or semaphores

Topic 35 Agon and Processes






































































































Independent VirtualPerocenor with its own local state
Each actor has a mailbox which kicks into
action as soon as a menage arrives or

else goes back to sleep

procen general purpose virtual processor
often implemented by OS to facilitate
concurrency

Actors can only be concurrent

Use actors for Concurrency without shared
state

few things not in definitionof actor
There is no single thing thats in control
only state in system is held inmenage and
in local state of each actor
All messages are one way there's no concept

of replyAn actor processes each message to
completion and onlyprocence one at a time

NoExplicit Concurrency in case ofActors

ge based one somewhat

similar lightweight processes

Topic 36 Blackboard






































































































Computer based blackboard systems were

originally used in AI application where problem
to be solved were large and complex

One of the first of its kind was David Gelernter's
Linda

Later came distributed blackboard systems like
Javaspace and Tspace

Use Blackboard to Co ordinateworkflow

Chapter 7 while you are Coding

Topic 37 Listen to your Lizard Brain

Listen to your lizardbain
insticts non conscious brain

Take break if feeling stuck at some problem
make doodles of problem explain it to yourco worker or your rubber ducky

It'sPlaytimeAuthor has stared at empty buffers
for long and devised a wayHe tells himself that he is making a proto
type only Maybe you are using a new

framework and want to know how data






































































































framework and and dal

birding works Explore new ideas algorithm

Not just your code try to learn from
others code

Topic 38 Programming by Coincidence

Buoyedby false confidence we may chargeaheadin oblivion So should we rely on coincidences
do we

Sometimes we might Sometimes its prettyeasy to
confuse a happy coincidence with a purposeful
plan
Accidents of Implementation things that
happen simply because thats the way codeis written
You end up relying on undocumented error or

boundary condition

CloseEnough Isn't example of hardware units
collecting data but incorrect processing of
time zone giving IL delta and programmer
just started agreeing 2 2 is just calculation
error

Phogittstme gon
find patterns

even when there are none






































































































Accident of content

Don't program by coincidence

Wto program deliberately
always be aware of what you are doing
can you explain code in detail to a junior

programmer

don't code in dark Build an application
you don't fully grasp you will be bitten

by coincidences
Proceed from a plan
Rely on reliable things Don't depend on

assumption
Document by anumptionDon't just test your code feet your
assumption as well
prioritize your effort
Don't be slave to history

What do we mean by EstimatingAlgorithmUtilise Big Onotation

Common Sense Estimation

O

µ
n2

2
+ 3n

¶
¼ O

µ
n2

2

¶
¼ O

¡
n2
¢

Topic 39: Algorithm speed






































































































on S al on

Simpleloops O n

Nested loops O mxn

Binary Chop O lgn
Divide andCong o n lg n
Combinatoric O n

Estimate the Order of your algorithm

Test Your Estimates

Best Isn't Always Best Be wary of premature
optimization

Topic 40 Refactoring
Code needs to evolve its not static

Refactoring is disciplined techniquefor restructuri
an existing body of code altering its internal
structure without changing its external behaviour

Critical partsof above def h

Activity isdisciplined
external behaviour doesn't change

when should you Refactor

Duplication
Non Orthogonaldesign
Outdated knowledge






































































































Outdal Knowledge
Usage
Performance
The test Pan

650 RefactorEarly and Refactoroften

Howdo you refactor

Don't try to refactor and add functionality
at the same time

Make sure you have good tests before you
begin refactoring Run these tests often

Take small deliberate steps move from one

clan to another split a method rename a

variable

Testing is not about findingBugs

Tests derive coding
A Test is the first user of YourCode

Tightly coupled code is hard to test

Test driven Development TDD

Topic 47: Test to code






































































































Basic cycleof TDD is

2 Decide on a small pieceof functionality youwant to add
2 Write a test that will pan once that
functionality is implemented

3 Run all testy Verify that the onlyfailureis only the test you just wrote4 Write the smallest amount of code needed
to get the test to pay and verify
that tests now run cleanly

5 Refactor your code

Idea is this cycle should be shot A matter ofminutes

Drawbacks of Test Driven Development

Spending lots of time to get loot coverage
lots of redundant tests
designs are mostly start at bottom and
work their way up

Build End to End Not Tob Down BottomUp

TDD You need to know where you are going

Backtocode component based development

unittating
Testing against contracts






































































































Design to Test

Ad Hoc Testing
Build a Test Window
A culture of Testing

Test you software or Your Users will

Topic 42 PubertyBased Testing
UsepropertyBasedTests to Validate Assumptions

In Python try out Hypothesis generates test
input

FindingBadAssumption

Property Based Tests often Surprise You
Property Based Tests also help your design

Topic 43 Stay Safe Out There

The Other 90

Security Basic Principles

2 Minimize attack surface area






































































































2 M mize allack surface area
2 Principle of Least Priviledge
3 Secure defaults
4 Encrypt Sensitive Data
5 Maintain SecurityUpdates

Keep It simple and minimize attack surface

Apply security patches Quickly

Common Sense vis Crypto

first and most important rule when it comes
to crypto never do it yourself

Topicty Naming Things

Honour the local culture

Consistency

Renaming is Even harder

740 Name Well Rename when Needed

Many books and tutorials refer to gathering

Topic 45: The Requirement Pit






































































































Many books and tutorials refer l gathering
requirements which implies that they already
exists waiting to be found Often we are

far away from them and they may not
even exist

750 No one knows Exactlywhat they want

The RequirementsMyth

70 Programmer helppeople understand what
they wantProgramming as Therapy

You role is to interpret what client says and
to feed back to them the implication

Requirements are Process

Requirements are learned in a feedbackloop

Walk in Your Chien't shoes

Work with a user to think like a User

Requirements uls Policy

Policy Is Metadata

Requirements Vs Reality
clientsays yes it does what I want but

not how I want






































































































Documenting Requirements

Best documentation codex
can't deliever to
client

RequirementDocuments are not for clients

Requirement Documents are for planning
User stories

of status and priority
Overspecification dangerous

Requirements Design Architeceen UI

need

Use a project glossary
46 Solving Impossible Puzzle

Secret to solve a puzzle Identify real not

imagined constraints and find a solution

Some constraints are absolute while others are just
percieved notions

Degree of freedom

Don't Think outside Box find the box






























.






































Get out of your own wayfortune favors the prepared mind

Topic 47 working Together

Pair Programming one of practices of extreme
Programming

Mob Programming

WhatIDo Try both strategies and see

what suits you
Don't Go into the Code Alone

Topic 48 The Es sense of Agility
830 Agile is not a noun Agile ishow youdo

things
Manifesto forAgile SoftwareDevelopment



There can never be an Agile Process Agility
is all about responding to change unknowns
that you encounter after you set out

So what do we do

I Work out where you are
2 Make the smallest meaningful step towards
where you want to be

3 Evaluate where you end up an fix anything
you broke

Topic 49 Pragmatic Teams

A Team is a small mostly stable entity of its own

Fifty people are not team they are horde

Maintain Small Stable Teams

Some concepts which are still relevant in
context of teams

No Broken Windows
Boiled frogs
Schedule your knowledge portfolio

A team work on more than feature e g
Old Systems Maintenance

a Procen Reflection and Refinement
New tech experiments



N tech experiments
Learning and skill improvents

Schedule it to make it happen

Communicate Team Presence
Don't repeat yourselves
Team tracer Bullets

Organize fully functional teams

Automation
Know when to stop adding paint

Topic 50 coconuts don't cut it

contextjatotona
way not what's fashionable

One size fits no one well

Take best pieces from any particular
methodology and adapt them for use
The Real Goal

The goal ofcourse isn't to do Scrum doagile
do lean or whatever The goal is to be in
position to deliever working software that
gives the user some new capability at moments
notice



88 Believer when Users need it

Once infra is in order you can decide to
work
Beginners Strum for project management

extremeprograming XP for technical practices

Experienced Kamban and Lean Techniques

Topic 51 Pragmatic Starter Kit

3 leg support of Every Project
t VCs
2 Regression testing
3 Full Automation

Use Version Control to Drive BuildsTests and
Releases

Test Early Test Often Test Automatically

Coding ain't done till all the tests even

unit Testing
Integration testing
Validation and Verification
Performance Testing
Testing the tests

Use Saboteurs to teety our testing
Netflix Chaos Monkey

Testing Thoroughly



930 Test State coverage not code coverage

PropertyBased Testing

g Find Bugs once

full Automation

Don't Use Manual Procedures

Topic 52 Delight Your Users

Topic 53 Pride and Prejudice

Sign Your Work
Your signature should come to be recognised as
an indicator of quality

The Moral Compass



1 Have I protected the user
2 Would I use this myself
Do no harm

Don't enable scumbags

100 It's your Life
Share it Celebrate it Build it
and HAVE FUN


